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ABSTRACT
Smart cities, utilities, third-parties, and government agencies are
having pressure on managing stochastic power generation from
distributed roo�op solar photovoltaic (PV) arrays, such as predict-
ing and reacting to the variations in electric grid. Recently, there
is a rising interest to identify solar PV arrays automatically and
passively. Traditional approaches such as online assessment and
utilities interconnection �lings are time consuming and costly, and
limited in geospatial resolution, and thus do not scale up to every
location. Signi�cant recent work focuses on using aerial imagery
to train machine learning or deep learning models to automatically
detect solar PV arrays. Unfortunately, these approaches typically re-
quire Very High Resolution (VHR) images and human handcra�ed
solar PV array templates for training, which have a minimum cost
of $15 per km2 and are not always available at every location.

To address the problem, we design a new system—SolarFinder
that can automatically detect distributed solar PV arrays in a given
geospatial region without any extra cost. SolarFinder �rst automat-
ically fetches regular resolution satellite images within the region
using publicly-available imagery APIs. �en, SolarFinder leverages
multi-dimensional K-means algorithm to automatically segment
solar arrays on roo�op images. Eventually, SolarFinder employs
hybrid linear regression approach that integrates support vector
machine (SVM) modeling with a deep convolutional neural net-
works (CNNs) approach to accurately identify solar PV arrays and
characterize each solar deployment. We evaluate SolarFinder us-
ing 269,632 satellite images that include 1,143,636 contours from
13 geospatial regions in U.S. We �nd that pre-trained SolarFinder
yields a Ma�hews Correlation Coe�cient (MCC) of 0.17, which is 3
times be�er than the most recent pre-trained CNNs approach and
the same as a re-trained CNNs approach.
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1 INTRODUCTION
Smart grid, as a network system that is comprised of over 500
million sensors and actuators, is the foundation of modern society
and actually one of the largest Internet of�ings (IoT) deployments
in the world [8]. �e number of solar-powered homes is rapidly
increasing due to a steep decline in solar module prices. In the �rst
quarter of 2019, over ⇠70% of solar deployments in the U.S. are
continuously small-scale photovoltaic (PV) arrays from residential
roo�ops. �ese distributed roo�op solar PV arrays are grid-tied
deployments that are feeding excess solar power generated back
into smart grid.

Smart grid is having challenges in managing and controlling this
intermi�ent solar generated energy. For instance, the increasing
penetration of roo�op solar PV arrays is decreasing the accuracy
of net load predictions for utilities. Meanwhile, utilities are losing
revenue from homeowners generating their own solar power dur-
ing the day, but still maintaining the same generating capacity to
provide these homeowners electricity when their solar PV arrays
are not able to generate power. As a result, government agencies
(e.g., Massachuse�s Applications for Cap Allocation [26]) usually
place limit on the amount of solar PV arrays that can be installed
in a geospatial region. �e current process relies on accurate sta-
tistics of solar deployment generation capacity within a region.
�us, recently, there is a strong interest from utilities, third-parties,
and government agencies in passively identify and characterize
roo�op solar PV arrays in the electric grid at scale and learn their
con�guration information, such as size, orientation and shading,
which is critical and valuable for solar forecasting and operation
management in smart grid.

Traditional approaches such as online assessment and utilities
interconnection �lings are time consuming and costly [9]. In addi-
tion, they are typically limited in some geospatial resolution and
thus do not actually scale up to all the locations. Signi�cant recent
work [15, 16, 18, 22–25, 33, 36] focuses on using aerial imagery
to train machine learning (ML) or deep learning (DL) models to
automatically detect solar deployments. �e key insight here is that
solar arrays are visually identi�able, as shown in Figure 1. Broadly,
these techniques all require training data that includes very high
resolution (VHR) images (0.3⇠0.8m per pixel) and human hand-
cra�ed image templates to calibrate their models. Unfortunately,
these data are very costly (may cost as $15 per km2 [31]) and not
available at every location, and thus new techniques are necessary.

To address the problem, we design a new approach—SolarFinder
that can automatically detect distributed solar PV arrays in a given
geospatial region without any extra cost. Our hypothesis is that the
new hybrid approach—SolarFinder is capable of detecting roo�op
solar PV arrays more accurately when it combining the bene�ts
from both of themachine learning approaches and the deep learning
approaches. In evaluating our hypothesis, this paper makes the
following contributions.
Pure Approaches Comparison. As reference points for solar PV
arrays detection, we �rst discuss both of the prior pure machine
learning (ML)-based solar arrays detection approaches and the most
recent pure deep learning (DL)-based approaches. We benchmarked
prior solar detection approaches and studied their bene�ts and
drawbacks. We �nd that ML-based approaches typically report
be�er True Positives, while, the DL-based approaches usually report
be�er True Negatives.
Detection Challenge. We highlight numerous challenges that
we met to detect solar arrays automatically from low or regular
resolution satellite imagery data. Roo�op solar array identi�cation
is a�ected by numerous unknown variables, including the physical



Figure 1: Solar PV arrays are visually identi�ed in publicly-
available Google satellite imagery.

characteristics of a home’s roo�op solar PV arrays, e.g., shading
generated by nearby tall buildings and trees, size, orientation, and
other outliers on roo�op, e.g., window, chimney, etc.
SolarFinder Design. We design a new hybrid approach—
SolarFinder, which detects solar PV arrays in a given region without
any extra cost. SolarFinder �rst automatically fetches satellite im-
ages within each region using publicly-available maps APIs. �en,
SolarFinder applies K-means to automatically segment roo�op im-
ages into contours. Finally, SolarFinder leverages hybrid linear
regression model that integrates a support vector machine (SVM)
classi�er with a Convolutional Neural Networks (CNNs) model to
accurately identify solar PV arrays, and also learn the detailed instal-
lation information for each solar deployment simultaneously. �is
information is critical for utilities, third parties, and government
agencies to manage solar resources.
Implementation and Evaluation. We implement and evaluate
SolarFinder using 269,632 publicly-available satellite images that
include 1,143,636 contours from 13 geospatial regions in the U.S.
We �nd that supervised SolarFinder is able to detect solar PV arrays
with the Ma�hews Correlation Coe�cient (MCC)—0.31, which is 2
times be�er than the most recent CNNs approach yielding at a MCC
of 0.17. Interestingly, pre-trained (or unsupervised) SolarFinder
yields a MCC of 0.17, which is 3 times be�er than the most recent
pre-trained CNNs-based approach and is the same as a supervised
CNNs-based approach. �us, SolarFinder achieves similar accuracy
without access to any training data from testing sites as a fully
supervised approach with complete access to such training data.
We evaluate our new approach–SolarFinder using multiple ways:

(1) We compare SolarFinder’s results with the groundtruth la-
beled data for 269,632 sites and show that it can accurately detect
roo�op solar installations and also learn the local physical charac-
teristics for each solar site.

(2) We validate SolarFinder’s detection results using the
groundtruth data for 500 sites from a government agency—
Massachuse�s Applications for Cap Allocation (MassACA) [26].

(3) We validate SolarFinder’s accuracy for pro�ling local physical
characteristics for 10 solar sites by integrating with most recent
solar generation capacity prediction work [11, 12], and the evalua-
tion shows that SolarFinder-assisted solar forecasting models can
help utilities to be�er predict solar generation in the grid.
Releasing Datasets and Code. We release all the datasets that
are comprised of over 200,000 satellite images and the source code
of SolarFinder on our website [34] such that other researchers may
use SolarFinder to benchmark their future work.

2 BACKGROUND
Problem statement: Given a geospatial region, we �rst want to
build a new approach that can automatically search and extract
roo�op images from publicly-available low or regular resolution
satellite imagery. We then present a new approach that can accu-
rately segment objects in each roo�op image. We further seek to
build a new model to accurately identify the solar arrays among all
the objects from each roo�op image. Moreover, for each detected
roo�op solar array, we want to learn its size, orientation and shad-
ing situation, and other physical characteristics that are critical to
predict solar generation capacity at each solar site. In doing these,
we can perform statistical learning for solar installations within a
given region, such as how many homes have solar arrays installed
on their roo�ops, and how many solar arrays are facing towards
south and north and so on. Formally, given a target geospatial
region ai , we need to segment all the roo�op images ri of all the
buildings bi with region ai . And for each roo�op ri , we then need
to segment all the objects bi (1 <= i < N ) into small “contours” ci .
Eventually, we will identify each ci that is solar array and report
its estimated size, orientation and shading situation. Further, using
this information, we need to predict solar generation capacity for
all the buildings bi with region ai .

We outline the design alternatives for detecting distributed
roo�op solar PV arrays using satellite images, including Machine
Learning (ML)-based approaches, and deep Convolutional Neu-
ral Networks (CNNs)-based approaches. In doing so, we review
a wide range of the most recent sophisticated solar PV array de-
tection approaches based on Logical Regression (LR), Support Vec-
tor Machines (SVMs) and Random Forest (RF) [22, 24, 25], and
(CNNs) [15, 23, 33]. Table 1 quanti�es the e�ectiveness of the three
approaches by showing the percentage of the approaches yield True
Positives (detect solar array and the roo�op does have one), True
Negatives (detect no solar array and the roo�op does not have one),
False Positives (detect solar array but the roo�op does not have
one), False Negatives (detect no solar array but the roo�op does
have one). �e accuracy is then the sum of the true positive and
true negative percentages. We report the Ma�hews Correlation
Coe�cient (MCC) [27] metric for each approach, a standard mea-
sure of a binary classi�er’s performance, where its values are in the
range of -1.0 and 1.0, with 1.0 being a perfect detection, 0.0 being
random detection, and -1.0 indicating an always wrong detection.

To generate Table 1, we prepared a dataset that has 1,000 satellite
images using Google Maps Image APIs [17]. We use the same
dataset to benchmark the performance of di�erent approaches in
Table 1. �e dataset has a class ratio that is the ratio of positives
to negatives as 1:1. We also preprocessed images for the di�erent
approaches based on their own requirements. Especially, for the
CNNs-based approach, we handcra�ed solar PV array masks for
its training data in the way as described in [23]. For the ML-based
approaches, we train all the models with a 70-30% split of training
data to test data.

2.1 Machine Learning Approaches
Prior research in [22, 25] leverages ML models to identify solar PV
arrays using very high resolution (VHR) roo�op satellite images
that have a resolution of 0.3 meter per pixel and 8-bit in each RGB



Model True Positives False Negatives True Negatives False Positives MCC
Logical Regression 74.06% 25.94% 74.54% 25.46% 0.15

SVMs (linear) 75.77% 24.23% 75.37% 24.62% 0.16
Random Forest 94.88% 5.11% 45.95% 54.05% 0.11

VGGnet-based CNNs 54.49% 45.51% 89.11% 10.89% 0.18
Table 1: �e comparison of detection accuracy when employing di�erent prior solar PV arrays detection approaches.

(a) solar arrays (b) structure (c) structure

(d) shade (e) ridge (f) trees
Figure 2: �e objects that may exist in roo�op images.

color channel. �e idea of these approaches is that solar PV arrays
have some unique physical shape features that allow us to train ML
classi�ers to predict the existence of solar PV arrays in the VHR
images. �e major challenge of these approaches is to empirically
identify unique shape features from those VHR images that can
be used to train the classi�ers. �e researchers in work [25] use
100 manually selected VHR images, with 50 images having solar
PV arrays installed and the other 50 images having no solar arrays
deployed on their building roo�ops. �e features extracted empiri-
cally include: prescreened con�dence in foreground color, color his-
togram of background pixels, the ratio of area to perimeters

2, and
the mean, variance and Kurtosis of the grayscale pixels per region.
�en, the researchers constructed a training dataset that includes
all the above shape features and has 18 dimensions. Eventually, a
SVM classi�er is employed to perform the binary classi�cation. A
later work in [22] demonstrates a detection approach based on the
similar insight as in work [25], but uses more features and leverages
RF classi�er to train their model.
Observation: Our results in Table 1 show that the prior ML-based
approach using the kernel of LR, SVMs and RF yields a MCC of
0.15, 0.11 and 0.16, respectively. �e accuracy of these ML-based
solar PV arrays detection approaches is slightly worse than the
CNNs-based approaches that typically yield a MMC of 0.18. But,
the ML-based approaches are reporting be�er True Positives (TP)
than the CNNs-based approaches. �is is mainly due to the fact
that physical color and shape features are very e�ective for ML
models to identify solar PV arrays.

2.2 Deep Learning Approaches
Signi�cant recent research focuses on leveraging visual geometry
group networks (VGGNets) [32] based CNNs techniques [15, 23]
to automatically detect roo�op solar PV arrays using satellite im-
ages. Broadly, these techniques all require a signi�cant amount
of training data including very high resolution (VHR) imagery
(0.3⇠0.8m/pixel) and human handcra�ed solar PV array templates

to train their models. For instance, the authors in [15] proposed
a �ve layers CNNs-based approach that includes three convolu-
tional layers and two fully connected layers. �e inputs are 3,347
three-channel satellite images with the size of 200⇥200 pixels. �e
training data of their CNNs model is a well balanced dataset with
a sample ratio of 1,643 positive samples to 1,704 negative samples.
�e major problem with this approach is that the input roo�op
images have many “outliers” rather than solar arrays, and the CNNs
model is not able to reliably identify them. �e work in [23] is an im-
provement to the approach in [15]. �e authors presented a CNNs
architecture that has two di�erent modules, including VGG(x ) mod-
ules, and fully connected neuron FC(�) modules. �e CNNs are
comprised of two consecutive convolutional networks, and each
has x �lters that are 3⇥3 pixels in size. And each convolutional
layer is followed by a recti�ed linear unit (ReLU) activation. �e
last part of the CNNs model is a 3⇥3 pixels max-pooling layer, with
a stride of 2 pixels. �e training dataset encompasses 135 km2 of
surface and has 2,794 solar PV array annotations. All the training
data and groundtruth data are labeled by human annotators. �e
work in [23] has be�er accuracy to identify solar PV arrays due to
two reasons: 1). �e CNNs-based approach is trained using VHR
images that have spatial resolution of 0.3 meter per pixel; 2). �e
solar PV array masks are handcra�ed by human annotators, and
signi�cantly help the CNNs-based approach to distinguish solar
PV arrays from other objects on the same roo�op image. Another
work [24] is a variant of the CNNs-based model in the work in [23]
and employs RF modeling to benchmark performance.
Observation: Our results show that CNNs-based approach yields
a MCC of 0.18 which is the best one among all the approaches
reported in Table 1. However, the CNNs-based approach is report-
ing the TN percentage of 89.11% which is 43.16% be�er than the
ML-based approach using RF classi�er, yielding at a TN percentage
of 45.95%. �is is mainly due to the CNNs-based approach may
not be able to reliably distinguish solar PV arrays from the other
roo�op objects that have similar grayscale as solar PV arrays’.

2.3 Summary
In summary, the ML-based approaches [22, 24, 25] are more accu-
rate when identifying solar PV arrays, while, the CNNs-based ap-
proaches [15, 23, 33] perform be�er for the identi�cation of roo�op
outliers than solar arrays. �is is mainly due to the fact solar arrays
have signi�cant features that allow us to identify them. Training
on these signi�cant features allows ML classi�ers to identify so-
lar arrays accurately. In comparison, CNNs-based approaches are
good at detecting those non-solar-array objects in roo�op images.
�e non-solar-array objects generally are hard to model manu-
ally or physically, for instance, the shades on the roo�ops vary at
di�erent houses. For the same roo�op, the shape and size of the



Figure 3: Pipeline of operations SolarFinder uses to identify
solar arrays within a target region.

shadings vary at di�erent times of a day, and on di�erent days of
a year. It is very challenging for ML-based approaches to learn
this e�ect and detect the shades e�ciently. While, the CNNs-based
approaches [22, 24, 25] that employ multiple convolutional network
layers and fully-connected layers are able to learn the characteris-
tics of those outliers. �erefore, to accurately detect roo�op solar
PV arrays, it is desirable to employ a hybrid approach that can
combine the bene�ts from both of the ML-based approaches and
the CNNs-based approaches. �at says, the new hybrid approach
should be able to report higher True Positives percentages and
True Negatives percentages simultaneously, and thus a be�er MCC
value. �e insights above lead to the design of SolarFinder’s ap-
proach, which integrates physical modeling, ML and DL techniques
to detect solar PV arrays in a region more accurately and more
e�ciently without any cost.

3 DETECTION CHALLENGES
In this section, we describe the major challenges that we met when
designing for our new approach—SolarFinder that accurately de-
tects distributed solar arrays in a target geospatial region.
Low resolution satellite images. Unlike prior approaches [10,
15, 15, 23, 23] that have access to VHR satellite images for a tar-
get geospatial region, SolarFinder only uses the publicly-available
satellite images that are typically in low or regular resolution. �us,
the shape features that are exacted empirically using VHR satellite
images may not be able to accurately describe the characteristics
of solar PV arrays using these satellite images.
Automatic building roo�op segmentation. Prior ap-
proaches [10, 15, 15, 23, 23] rely on human annotators to
segment roo�op images in a region. However, this segmentation
approach only applies on solar array detections in small regions
and it does not scale up to every location in the world. In addition,
it is impractical for SolarFinder to employ human annotators or
Amazon Mechanical Turk to handcra� building roo�op images
due to the arbitrary searching region and its area.
Objects segmentation. Current DL-based approaches require
handcra�ed solar PV array image templates to train a reasonably
accurate model. While, within a small region that has area of 78.54
km

2 and the ratio of solar-powered homes to regular homes as
0.57, the total amount of satellite images that SolarFinder has to
preprocess can be as many as 41,995. �at says, SolarFinder has to
automatically segment roo�op objects on each roo�op imagery.
Inaccurate shape and color features. In addition to solar panels,
many other objects may exist on the roo�ops. As show in Figure 2,
these may include ridges, structures, trees, and shades. Especially,
the physical shape features of ridges, structures and shades have
signi�cant overlaps on their statistical characteristics, e.g., mean,

Figure 4: �e overview of the OSM�le that includes building
tag, nodes, and location for a two-story private house.

variance, range, standard deviation, etc. We will discuss more in
our shape features extracting section later.
Highly imbalanced data. �e prior work mainly prepares their
training using a 1:1 ratio which indicates a well-balanced VHR im-
age dataset such that 50% of the dataset are positives samples (have
solar PV arrays) and the other 50% images have no solar PV arrays
included. However, in the actual “searching” of solar arrays within
an arbitrary region, as shown later in Section 6, the satellite image
datasets are typically highly imbalanced. �e current ML-based
approaches may need more “negations” to achieve more accurate
true negatives when detecting solar arrays. We identify new physi-
cal features to mitigate this issue. In addition, prior research [19]
has shown that many accuracy metrics such as ACC, F1, precision,
recall and others are very sensitive to the ratio of negative examples
to positive samples in their datasets. �us, prior approaches’ results
may not be able to re�ect actual binary classi�cation results when
applying on datasets that have di�erent ratios. We use MCC to
report all accuracy results in this paper.

4 SOLARFINDER DESIGN
In addressing these issues, we design a new system—SolarFinder
that accurately detects distributed solar array automatically without
any extra cost. SolarFinder works by �rst automatically segment
satellite images to roo�op images. A�er identifying the building
roo�ops from satellite images, SolarFinder leverages K-means to
automatically segment roo�op images into object contours. �en,
SolarFinder employs a hybrid approach that integrates the SVM-
RBF model with the CNNs model to detect solar PV arrays. Finally,
SolarFinder applies solar array size, orientation and other character-
istics estimators to further pro�le each solar installation. Figure 3
shows the SolarFinder’s pipeline of operations.

4.1 Preprocessing Satellite Images
Segmenting Building Satellite Images. As discussed in Sec-
tion 3, it is impractical to leverage human annotators or AmazonMe-
chanical Turk to handcra� building roo�op images for SolarFinder.
To address this problem, instead of focusing on segmenting build-
ing images directly from satellite images, we present a reversed
image fetching approach that leverages publicly-available maps
APIs, e.g., Google Maps [17], OpenStreetMap [28], etc. �e input
of the approach is a region and outputs are the segmented roo�op
satellite images. Given a set of target regions ri , where 0 < i < n+1,



Figure 5: �e relationship between K and WCSS errors for
K-Means clustering.

SolarFinder �rst collects all the building bi roo�op polygons’ infor-
mation using OpenStreetMap API.�e return of OpenStreetMap
API is the OSM �le that contains pro�ling information for all the
objects. �us, SolarFinder �lters out those “outliers” that are not
buildings. By doing this, as shown in Figure 4, SolarFinder fetches
the location information of all the nodes for each building. Even-
tually, SolarFinder recovers roo�op polygons using those nodes
information, and feeds them into the Google Maps API that returns
the satellite imagery ri when a region is speci�ed in the requests.

Note that, OpenStreetMap has the roo�op polygon information
for most of the buildings. SolarFinder’s approach to estimating
the polygon information of roo�ops is orthogonal to the other
aspects of the technique and we could use other approaches to
pro�le roo�ops. �e data from OSM has been used in various ways
including production of paper maps and electronic maps (similar to
Google Maps, for example), geocoding of address and place names,
and route planning. However, we are not aware of any other work
that used OpenStreetMap to identify the roo�op polygon shapes.

Segmenting Roo�op Satellite Images. A�er segmentation of
building satellite images, we now have all the roo�op images. So-
larFinder then leverages unsupervised multi-dimensional k-Means
algorithm [20] to automatically segment each roo�op image ri into
a set of contours ci such that objects on the roo�op ri are isolated.
K-means clustering �nds the best centroids by alternating between
assigning grayscale data point per pixel to clusters using current
centroids or selecting the centroids using current assignment of
grayscale data point per pixel to clusters. �us, given a roo�op
image ri , our goal is to assign each pixel based on its grayscale
value into the best cluster. �e key to apply K-means clustering is
to determine the optimal K . We leverage elbow method [3] to deter-
mine the optimal number of clusters—K.�e elbow method is using
within-cluster sum of square (WCSS) as the metric to benchmark
each possible K. As shown in Figure 5, we �nd that when choosing
K = 5, the K-means algorithm yields at the minimum WCSS.�e
outputs of this segment process are the contours that potentially
have all the roo�op objects reside.

4.2 Detecting Roo�op Solar PV Arrays
SolarFinder leverages a hybrid approach that integrates ML model
with CNNs-based modeling to accurately identify solar PV arrays
in each roo�op images, and thus achieve the bene�ts from both.
Below, we �rst introduce howwe identify principle features andML
classi�ers. A�er that, we discuss the design of our CNNs modeling.

Eventually, we introduce the design of our hybrid approach that
combines ML classi�er and CNNs modeling.

To identify principle features of solar PV arrays, as shown in
Figure 6, we �rst build a large solar array satellite image dataset
that has 269,632 solar roo�op images and then physically examine
12 features based on shape, RGB channels, and grayscale in all the
contours of solar arrays, including the mean and standard devia-
tion of grayscale, mean and standard deviation of blue channels,
size, square similarity, ratio of width to height, area ratio, number
of edges, number of corners, and corner degrees. We include the
shapes of solar PV arrays as an important feature in our ML model.
In addition, as we observed in satellite images, the shapes of solar
PV arrays may look like squares, rhombus, diamonds, or paral-
lelograms rather than always uniform rectangles due to their tilt,
orientation and shadings from nearby trees and tall buildings. �us,
as shown in Figure 6, we identi�ed additional features based this
observation, including number of curves, number of corners, and
square similarity. Note that, SolarFinder’s approach to estimating
the shapes of solar arrays is orthogonal to the other aspects of the
technique and is thus “pluggable,” such that we could use other
computer vision approaches to estimate object shapes on roo�ops.

For each feature in Figure 6, we report two statistical analysis
results, the le� one shows the results when we analyzing on non-
solar-panel resident contours, and the right one shows the results
when we use solar panel resident contours. �us, for a sensitive fea-
ture that contributes to identifying solar arrays, it is expected that
the feature can show a signi�cantly di�erent pa�ern between the
statistical analysis results in the subgraph. For example, the results
in Figure 6 show that grayscale mean (Figure 6(a)) and blue channel
mean (Figure 6(c)) are sensitive metrics that can be used to identify
solar PV arrays in a contour. Interestingly, as shown in Figure 6(j),
the feature—the number of corners is not a very sensitive metric to
identify solar arrays since we can observe there is not a signi�cant
change on this value for solar panel resident contours and non-solar
panel resident contours. Similarly, another feature—the number of
edges (shown in Figure 6(j)) has 100% overlap in statistical analytics
using the contours from two di�erent categories.

However, it is di�cult to empirically extract the principle fea-
tures for ML classi�ers directly from this statistical analysis. �us,
we plot a sca�er grid in Figure 7 that shows the correlations between
each feature with all other features. Some features may highly cor-
relate with other features, although they may show signi�cant
sensitivity in statistical reporting results as shown in Figure 6. For
instance, the shape feature—shape factor (a.k.a, Square Similarity
in Figure 6) that indicates as to the shape of the object. It can be
de�ned as follows,

4 · � · ai
pi 2

(1)

where ai denotes the area of the i � th contour, and pi indicates
the perimeter of the i � th contour. Circles have the greatest area
to perimeter ratio and this feature will approach a value of 1 for
a perfect circle. Squares like solar panels are around 0.78. A thin
thread-like object would have the lowest shape factor approaching 0.
�e shape factor (Figure 6(f)) highly correlates with other features,
such as the ratio of width to height (Figure 6(g)) and area ratio
(Figure 6(h)) for a contour. However, we are not able to simply
choose these features since they may over�t our ML models.



(a) Gray Mean (b) Gray Standard Deviation (c) Blue Mean (d) Blue Standard Deviation

(e) Size (f) Square Similarity (in) (g) Width/Height Ratio (h) Area Ratio

(i) Number of Curves (j) Number of Corners (k) Corners less than 90� (l) Corners less than 70�

Figure 6: �e statistical analysis of 12 features that can be used to detect solar PV arrays.

Figure 7: �e scatter grid plot shows the correlations
between shape features and color features using 125,672
roo�op contours.

To address this problem, we leverage principal component analy-
sis (PCA) which simpli�es the complexity in high-dimensional data
while retaining trends and pa�erns. PCA provides dimensionality
reduction that has been used to optimize the training time and solve
part of the over��ing problem. We employ PCA to automatically
learn the principle features for solar PV arrays detection. When
applying PCA on our dataset, the input is the whole dataset ignor-
ing the binary class labels. PCA computes the covariance matrix,
and eigenvectors and corresponding eigenvalues. Eventually, we
transform our samples onto new subspace. We �nd that starting

from 8 components, and the PCA’s variance is closing to 1.0. �at
says, SolarFinder is able to reduce dimensions from 17 to 8. We use
these 8 principle components as the inputs for our ML classi�er.

4.2.1 Training Machine Learning Classifier. We �nd the princi-
ple features in Section 4.2. Next, we focus on selecting the optimal
ML classi�er that has the best accuracy for solar arrays detection.
We investigate the most widely used machine learning models in
prior solar detection work, including logical regression, support
vector machines (SVMs), and random forest. In particular, we also
benchmark the di�erent kernels for SVMs, including linear, linear
passive-aggressive, linear ridge, polynomial with 1⇠10 degrees, and
radial basis function (RBF). �e results in Figure 8(a) show that
the SVMs classi�er with RBF kernel yields the best MCC as 0.25,
which is 2 times be�er than the random forest classi�er. Note that,
the prior research in [22] relies on random forest model to identify
solar PV arrays. �is is mainly due to their observation is based
on a very limited size of image dataset. �us, by intergrading our
approach which is built based on a signi�cantly larger dataset, the
prior work [22, 24, 25] may achieve be�er accuracy.

4.2.2 Training Deep Learning Classifier. Aswe already discussed
in Section 2, we �nd that ML-based approaches are typically re-
porting be�er true positives percentages, while, CNNs-based ap-
proaches are usually reporting slightly be�er true negatives percent-
ages. Based on this insight, in addition to the ML-based approach—
SVMs classi�er with RBF kernel, we also design a CNNs-based
based DL approach to detect solar PV arrays using their satellite
images. Below, we describe the design of our CNNs architecture.
As shown in Figure 9, our CNN architecture is comprised of input,
convolutional layers (ReLU), max pooling, fully-connected layers
(with and without ReLU) and output. �e inputs are 150x150 con-
tour images, and the �rst two layers are convolutional layers that
have 150x150 neurons with a recti�ed linear unit (ReLU). �en, we
have another two convolutional layers that have 75x75 neurons
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Figure 8: �e comparison of detection accuracy when using di�erent ML models and kernels and hybrid fusion approaches.

Figure 9: �e overview of our CNNs architecture design.

with ReLUs. A�er these, we employ another 4 convolutional layers
with ReLUs, and these layers all have 18x18 neurons. Finally, we
leverage 4 convolutional layers with ReLUs, and these layers all
have 9x9 neurons. Among the di�erent groups of convolutional
layers, we have 2x2 max pooling which is used to down-sample
the input images and reduce its dimensionality. In addition, two
fully-connected layers with ReLU and another fully-connected layer
(without ReLU) are added to process SolarFinder’s outputs.

4.2.3 Building Hybrid Approach. Our key insights are 1) SVMs-
RBF model achieves a be�er True Positives (reporting solar PV
arrays), 2) CNNs model has a be�er True Negatives (reporting non-
solar-arrays objects on roo�ops), 3) to get the bene�t of both, we
design the hybrid approach—SolarFinder. �e SVMs-RBF model, as
a part of our hybrid approach leverages the new features that we
developed based our observation of physical features from solar PV
arrays (shown in Figure 6) to identify solar PV arrays when using
true positive/negative bias data.

Below, we describe the design of this hybrid approach. We �rst
study the performance of a set of potential hybrid fusion approaches
that are using both the averaging and boosting methods. �ese
approaches include Voting, SVMs, and Linear Regression (LR), Ran-
dom Forest, Decision Tree, Extra Trees, Ada Boost, Gradient Boost,
and Hist Gradient Boosting that have been widely used in prior
assembling learnings. Note that, SolarFinder’s approach to com-
bine the predictions of the two di�erent estimators/classi�ers is
orthogonal to the other aspects of the techniques, such that we
could use other fusion methods to combine the predictions. �e

inputs are both the outputs from the SVMs-RBF prediction (in Sec-
tion 4.2.1) and the outputs from the CNNs approach prediction (in
Section 4.2.2). In doing so, SolarFinder can inherently combine
the bene�ts from both. �e comparison results that we use di�er-
ent models to build SolarFinder’s hybrid approach are shown in
Figure 8(b). We split the dataset into training dataset and testing
dataset using a ratio of 7:3. �e results indicate that LR yields at the
best MCC as 0.24. �us, by leveraging LR to combine the SVMs-RBF
modeling and CNNs modeling, we achieve a be�er MCC and thus
can more accurately identify solar PV arrays from roo�op images
than prior pure SVMs and pure CNNs approaches. �e details of
our LR modeling is described as follows,

Y (i) = 0.6443 · YCNNs (i) + 1.6638 · YSVMs (i) � 1.4677 (2)

where Y (i) denotes the �nal output of SolarFinder for contour i ,
YCNNs (i) indicates the prediction output using pure CNNs ap-
proach, and YSVMs (i) denotes the prediction output using pure
SVMs-RBF approach. LR �ts a linear model with coe�cients—
C = (C1,C2) to minimize the residual sum of squares between the
observed results in the dataset, and the results are predicted by
the linear approximation. For the LR model here, we learned the
coe�cients as (0.6443, 1.6638) with a lost/bias function as -1.4677.

4.3 Pro�ling Roo�op Solar Arrays
In addition to detecting solar PV arrays, SolarFinder can also pro�le
each reported solar PV array. �e pro�ling informationmay include
size, orientation, shade, window, chimney, etc. For instance, to
report the size, SolarFinder examines the number of pixels that are
included in the identi�ed solar arrays. Since each pixel denotes
an area with a size of S km

2, where S can be derived based on
the image zoom level—20 and its location. SolarFinder �rst simply
multiplies the pixel size by the number of pixels in a solar array
resident contour. �en, SolarFinder performs a union operation
to add up all the contours for the same roo�op to report its solar
PV array size. Similarly, SolarFinder can report the size of shading
generated by nearby tall trees or buildings. To learn the orientation
for a roo�op solar deployment, SolarFinder measures the angle
di�erence between the minimum bounding rectangle (MBR) and
the minimum area rectangle for each contour. SolarFinder reports
the orientation by estimating the di�erence between them.



4.4 Preprocessing and Training Overhead
As we had discussed in Section 2, prior techniques typically re-
quire a signi�cant amount of training data including VHR imagery
(0.3⇠0.8m/pixel) and human handcra�ed solar panel image tem-
plates to train their models. �e preprocessing is time consuming,
our hybrid system—SolarFinder leverages OpenStreetMap [28] API
to fetch the roo�op images, and then uses the unsupervised roo�op
object clustering approach to automatically segment solar arrays
from roo�op images. In addition, our CNNs model architecture
has fewer layers than prior CNNs-based approaches. As we shown
in Section 6, SolarFinder is the best “unsupervised” (pre-trained
and without repeated training) yields the same accuracy as “su-
pervised” (repeated training) pure CNNs-based approach. In doing
so, SolarFinder reduces the preprocessing overhead and training
overhead.

5 IMPLEMENTATION
We implement SolarFinder in python using widely available open-
source frameworks, including Pandas [29], OpenCV [4], Scikit-
learn [5] and PyCUDA [1, 2]. SolarFinder leverages a number
of Maps APIs, e.g., Google Maps API [17], and OpenStreetMap
API [28]. Our current implementation fetches satellite images
(800x800 pixels) within a target region as described in Section 4. We
use OpenCV, NumPy and Pandas for grayscale and RGB channel
image data processing. We use the Scikit-learn [5] machine learn-
ing library in python to build our pure ML-based approaches. �e
library supports multiple techniques including SVMs with di�erent
kernel functions, multiple linear regression models and PCA. In
particular, to report the results in Table 3, we implement the pure
ML-based models as speci�ed in prior work [22, 24, 25] using the
same input features, dependent output variable, and the same ker-
nels. However, for the results in Table 1 and all other comparison
and evaluation results in �gures, we use our own extracted features
Section 4 that are identi�ed and extracted by applying PCA. For the
CNNs-based approaches, we implement them based on the frame-
work from VGGnet [6]. To implement the hybrid approaches, we
use Scikit-learn [5], OpenCV and VGGnet. Finally, we schedule the
batch jobs on our GPU servers to compare the MCC accuracy of 8
di�erent approaches using CUDA. �e server that we use to get all
the benchmarking and evaluation results has resources as follows:
1) CPU: 2x Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz, 2) GPU:
nVidia TITAN X (Pascal) (x8), 3) RAM: 128GB, 4) OS: Linux CentOS
7.

6 EXPERIMENTAL EVALUATION
Below we describe our dataset, experimental setup, metrics used to
evaluate our approach, and evaluation results.

6.1 Datasets
Dataset 1. We collect publicly-available satellite images using
Google Maps API [17] and OpenStreetMap API [28] from 13 regions
of 9 di�erent states in U.S., including Colorado, Wisconsin, Cali-
fornia, Massachuse�s, Minnesota, Arizona, Maryland, and Wash-
ington. Table 2 shows the detailed pro�ling information for each
region. �e regions are sorted by the quantity ratio of solar-powered
homes to non-solar-powered homes. We randomly selected these

13 regions using Google Maps API [17] with a radius ranging from
5 km to 20 km. We chose to start with 5 km radius areas because
many other related research such as [13, 14] is interested in 5 km
radius areas, for instance, solar localization, given “anonymous”
solar generation usage data, prior work can localize the source site
that produces these data to an interested area with 5 km radius.
�en, the prior work can integrate our approach—SolarFinder to
further narrow down to a speci�c home. In addition, we developed
a toolkit that allows us to visually label solar PV arrays and their
groundtruth pro�ling information in roo�op satellite images. �is
toolkit is already included in SolarFinder release [34].
Dataset 2. We download 500 private houses satellite images using
Google Maps API [17] and OpenStreetMap API [28] based on the
locations and groundtruth data that are provided on the website
of a government agency — Massachuse�s Applications for Cap
Allocation (MassACA) [26]. Given a solar-powered home listed in
this dataset, we can access to its grundtruth data, including street
address, solar generation capacity and installation details.
Dataset 3. We also download 1-minute level solar generation ca-
pacity data for 1 year from the dataset which is released by the
most recent solar forecasting work [11, 12]. �is dataset has three
dimensions including timestamps, groundtruth solar generation,
predicted solar generation using the models in work [11, 12].

Note that, the groundtruth data may change over the time. Our
approach will work as long as new solar PV arrays are updated
in the publicly-available satellite images. In particular, as shown
in Section 6.4.3, SolarFinder does not need to be re-trained when
more solar PV arrays become online. In addition, the penetration of
increasing PV adoption may improve the accuracy of SolarFinder.

6.2 Experimental Setup
We implement and compare two di�erent categories—supervised
and unsupervised of solar PV arrays detection approaches. To bet-
ter understand and analyze the bene�ts of di�erent approaches, we
also implement a naive thresholding approach, which leverages
the insight—some statistical features allow us to distinguish solar
arrays from other outliers on roo�ops from Figure 6. For the pure
SVM-based approach, we employ the best performance kernel—the
Radial Basis Function (RBF) that is evaluated in Figure 8. For the
pure CNNs-based approach, we use the VGGnet [6] based CNNs
architecture which is shown in Figure 9. Finally, for the hybrid
approach which SolarFinder employs, we leverage the Linear Re-
gression (LR) model that is designed in Equation 2. �us, we have
4 di�erent solar PV array detecting approaches per category.
Supervised Approaches. In this case, all of the naive threshold-
ing, pure SVMs, pure CNNs, and hybrid approaches can access to
the solar array satellite images from their testing sites. For the
pure CNNs and hybrid approaches, we also �ne-tune the VGGnet
using the information from the testing sites. In doing so, we are
benchmarking the best performance of these 4 di�erent approaches.
Unsupervised Approaches. In contrast, in this case, all of the
naive thresholding, pure SVMs, pure CNNs, and hybrid approaches
can not access to satellite images from their testing sites. For pure
CNNs and hybrid approaches, we do not �ne-tune the VGGnet using
the information from the testing sites. In doing so, we are bench-
marking the practical performance of the 4 di�erent approaches.



Regions State Centroid Location Radius (km) Houses Solar-power Houses Solar Deployed Ratio
#1 WI 43.084961,-88.317162 5 12 0 0.00%
#2 WA 47.313595,-121.99985 5 2,110 11 0.52%
#3 MN 44.926191,-93.213728 5 6,655 37 0.56%
#4 CA 37.438949,-122.18969 5 8,339 473 0.57%
#5 MD 39.371454,-76.738717 5 7,158 84 1.17%
#6 AZ 33.322122,-111.94023 5 526 7 1.33%
#7 MA 42.250448,-72.676531 15 53,491 1,193 2.01%
#8 MA 42.250448,-72.676531 20 185,486 3,795 2.05%
#9 MA 42.250448,-72.676531 10 11,874 531 2.23%
#10 CA 36.764751,-119.80308 5 305 8 2.62%
#11 CO 39.881184,-104.96045 5 3,063 88 2.87%
#12 MA 42.250448,-72.676531 5 6,296 380 6.00%
#13 CA 37.309364,-122.06914 5 7,021 852 12.13%

Table 2: �e pro�ling information for 13 di�erent regions in 8 di�erent states of U.S. we use in the evaluations.

In real applications, SolarFinder works in this unsupervised way
such that no groundtruth data is required from testing roo�ops in
a new region to detecting distributed solar PV arrays.

6.3 Evaluating Metrics
Blow we describe the metrics that we use to evaluate SolarFinder
and other related approaches.
Matthews Correlation Coe�cient (MCC). To quantify the ac-
curacy of di�erent detection approaches, we �nd that the stan-
dard evaluating metrics, e.g, accuracy, F1, would not work well on
highly imbalanced data. And this observation has been studied by
researches in work [7, 30]. Based on the recommendation from
prior work [7, 30], we use the MCC [27], a standard measure of a
binary classi�er’s performance, where values are in the range �1.0
to 1.0, with 1.0 being perfect solar PV arrays detection, 0.0 being
random solar PV arrays prediction, and �1.0 indicating solar PV
arrays detection is always wrong. �e expression for computing
MCC is below, where TP is the fraction of true positives, FP is the
fraction of false positives, TN is the fraction of true negatives, and
FN is the fraction of false negatives, such that TP+FP+TN+FN= 1.

TP ⇤TN � FP ⇤ FNp
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(3)

Jaccard Similarity Index (JSI). To quantify the accuracy of So-
larFinder to predict size for solar PV arrays, we use JSI which is
widely used in prior work to measure the similarity between de-
tected regions and groundtruth regions. JSI measures the similarity
for the two sets of pixel data, with a range from 0% to 100%. �e
higher the percentage, the more precise prediction that SolarFinder
can do. It can be de�ned as follows,

�SI =
rd

—
r�

rd
–
r�

(4)

where rd denotes the detected region for a solar PV array, and r�
indicates the groundtruth region for a solar PV array.
Mean Orientation Error (MOE). To quantify the accuracy of So-
larFinder to predict orientations of solar PV arrays, we employ the
MOE that is introduced in a recent work [21]. �e MOE captures
the per-pixel error between the predicted and the actual azimuth
angle. It is de�ned as follows,

MOE =
1
C

·
’
i

Õ
j pi j · Azimuths di f f er (oi ,oj )

ti
(5)

where C is the total number of classes (i.e., azimuths), oi and oj
are the azimuth angles, and pi j indicates the number of pixels of
azimuth j reported as azimuth i , and ti is the total number of pixels
in class i . In addition, Azimuths di f f er returns the di�erence
between two azimuth angles. �e MOE should return a value
between 0� (perfect estimation) and 180� (opposite estimation).
MeanAbsolute Percentage Error (MAPE). To quantify the accu-
racy of SolarFinder-assisted solar forecasting models, we compute
the MAPE, as follows, between the ground truth solar energy and
the solar energy that SolarFinder-assisted infers over all time inter-
vals t . A lower MAPE indicates higher accuracy with a 0% MAPE
being perfectly accurate solar PV array detecting and pro�ling.

MAPE =
100
n

n’
t=0

| St � Pt
St

| (6)

where n describes the duration of the solar prediction, St denotes
the actual solar generation capacity, and Pt indicates the predicted
solar generation capacity at the moment t .

6.4 Experimental Results
6.4.1 Comparing Supervised Approaches. As we explained in

the section 6.2, we �rst compare SolarFinder with fully supervised
pure SVM and pure CNNs approaches that have access to satellite
images from testing sites. In this case, the three approaches split
the dataset into training and testing dataset using a ratio of 7:3 a�er
cross-validation. Unsurprisingly, as shown in Table 3, SolarFinder
yields the best MCC—0.31, and is the best performing and the
most sophisticated solar PV arrays detection approach. We can
also see that the pure CNNs approach and the pure SVM approach
yields a MCC of 0.17 and 0.25, respectively. However, the pure
SVM approach reports signi�cant be�er True Positives percentages
than that of pure CNNs approach. Interestingly, although naive
thresholding approach yields the worst MCC, it does yield the best
True Negatives percentage. �at says, we can leverage the naive
thresholding approach to label groundtruth satellite images, and it
will signi�cantly reduce the time that human annotators spend to
collect groundtruth data.



Model True Positives True Negatives False Positives False Negatives MCC
Pure thresholding (supervised) 15.47% 94.62% 5.38% 84.53% 0.06

Pure SVMs (supervised) 84.87% 84.51% 15.49% 15.13% 0.25
Pure CNNs (supervised) 54.49% 89.11% 10.89% 45.51% 0.17
SolarFinder (supervised) 79.41% 91.01% 8.99% 20.59% 0.31

Pure thresholding (unsupervised) 23.37% 94.84% 5.16% 76.63% 0.06
Pure SVMs (unsupervised) 84.78% 76.29% 23.71% 15.22% 0.11
Pure CNNs (unsupervised) 53.26% 78.33% 21.67% 46.74% 0.06
SolarFinder (unsupervised) 71.74% 91.98% 8.02% 28.26% 0.17

Table 3: �e comparison of detection accuracy when employing naive thresholding, pure SVMs, pure CNNs and hybrid ap-
proaches.

Results: Comparing with the supervised ML and CNNs approaches,
SolarFinder is the best performing approach and it yields the best
MCC as 0.31, which is 5 times be�er than pure thresholding approach
and ⇠2 times be�er than pure CNNs approaches.

6.4.2 Comparing Unsupervised Approaches. We then compare
the accuracy of unsupervised pure SVM, pure CNNs and SolarFinder
approaches that do not have access to any satellite images from
testing sites. In this case, the three approaches split the dataset
into training dataset and testing dataset using a ratio of 7:3 without
cross-validation between the two datasets. Note that, the pure
CNNs approach does not use any information from testing sites
to �ne-tune its CNNs model at this time. As shown in Table 3, as
we expected, SolarFinder yields the best MCC—0.17, which is 3
times be�er than prior pure CNNs approach, yielding at a MCC of
0.06. Similar to the comparison results of supervised approaches,
naive thresholding approach still yields the worst MCC. Again,
both of the pure CNNs approach and pure SVM approach have the
similar MCC. However, the pure SVM approach reports signi�cant
(⇠31.52%) be�er True Positives percentages than that of pure CNNs
approach. Interestingly, naive thresholding still yields the best True
Negatives percentage.
Results: Comparing with the unsupervised ML-based and CNNs-
based approaches, SolarFinder is the best performing approach and it
yields the best MCC as 0.17, which is 3 times be�er than both of the
pure thresholding approach and the pure CNNs approach.

6.4.3 Unsupervised VS Supervised Approaches. Table 3 shows
that unsupervised SolarFinder yields the same MCC (⇠0.17) as
supervised pure CNNs approach. In addition, the MCC reported
by the unsupervised CNNs-based approach is signi�cantly worse
than that of the supervised CNNs-based approach, decreasing by
3x (from 0.18 to 0.06). �is is mainly due to the fact that the un-
supervised CNNs-based approach can not leverage any informa-
tion from testing satellite images to �ne-tune its neural networks.
Interestingly, the unsupervised CNNs-based approach performs
signi�cantly worse and yields exactly the same MCC as the naive
thresholding approach.
Results: Comparing with both of the supervised and unsupervised
ML-based and CNNs-based approaches, SolarFinder is the best un-
supervised performing approach and it yields the best MCC as 0.17,
which is the same as supervised pure CNNs approach.
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Figure 10: Higher ratios of solar-powered homes to non-
solar-powered homes results in higher accuracy. So-
larFinder yields the best accuracy across 13 di�erent loca-
tions (sorted by the ratios in ascending order).

6.4.4 �antifying SolarFinder’s Accuracy. We next evaluate the
detection e�ect on pre-trained or unsupervised SolarFinder us-
ing di�erent regions that have di�erent ratios of solar-powered
homes to no-solar installed homes. By doing this, we can examine
SolarFinder’s accuracy when searching over the regions having
imbalanced satellite images data. As shown in Figure 11, the MMC
curves reported by all the solar array detection approaches includ-
ing our SolarFinder are having similar pa�ern as the curve of the
ratios of solar-powered buildings to non-solar-powered buildings.
�is is mainly because when the ratio goes up, we have more solar
arrays satellite images in the dataset, thus SolarFinder is able to
yield a be�er MCC. In addition, SolarFinder’s MCC is always the top
of all other approaches’ MMC curves. �us, the highly imbalanced
satellite image datasets do not a�ect SolarFinder’s accuracy. Solar
PV adoption depends on the politics and incentives in a state. As
shown in Figure 11, this course incorporation of this information
that results in a higher adoption rate in a region should yield a
be�er detection accuracy of SolarFinder. Note that, the 13 regions
have the ratio of solar-powered homes to no-solar installed homes
ranging from 0%⇠12.13% and the radius ranging from 5⇠20km. �e
regions that have di�erent areas but the same ratios, e.g., Region
#7, #8 and #9, yield the similar MCC.
Results: Higher ratios of solar-powered homes to non-solar-powered
homes results in higher accuracy of SolarFinder. In addition, So-
larFinder consistently achieves the best accuracy across 13 locations
that have di�erent ratios.

We next plot the receiver operating characteristic (ROC) curves
for pure SVM, pure CNNs, and SolarFinder approaches. �e goal



Figure 11: �e comparison of receiver operating characteris-
tic (ROC) curves when applying supervised (solid) and unsu-
pervised (dashed) classi�ers, including pure SVM approach,
pure CNNs approach and SolarFinder.

of this examination is to evaluate the output quality for these 3
di�erent approaches. ROC curves feature true positives rate on
the Y-axis, and false positives rate on the X-axis. �us, that says,
the top le� corner of the plot is the “ideal”—a false positive rate of
zero, and a true positive charge of one. In addition, a larger area
under the curve (AUC) is typically be�er. As shown in Figure 11, for
the supervised comparison (solid), SolarFinder stays at the top le�
corner and overlaps with the pure SVMs approach. While, in the
unsupervised comparison (dashed), SolarFinder is the only one that
stays at the top le� corner quickly and stably yields a true positives
rate as ⇠1.0. In addition, the AUC under SolarFinder curve has
the largest area. �erefore, among all the approaches examined in
Figure 11, SolarFinder is the best binary classier when detecting
solar PV arrays using satellite images.
Results: SolarFinder’s ROC curve stays on the top of the le� corner
and has the largest AUC.�us, comparing with prior ML-based and
CNNs-based approaches, SolarFinder is the best binary classier for
solar PV arrays detection.

6.4.5 Profiling Detected Solar PV Arrays. Next, we examine the
accuracy of SolarFinder when predicting solar array size and ori-
entation using Dataset 2 in section 6.1. SolarFinder �rst fetches
the 500 homes roo�op images and segments them into contours.
SolarFinder then applies unsupervised SolarFinder approach over
those contours to identify solar panels and learning their charac-
teristics, e.g., size, orientation, shade, etc.
Predicting the sizes of solar PV arrays. We employ the metric—
JSI ( in Section 6.3) to report the accuracy. As discussed in Section 4,
to report the size of solar arrays, SolarFinder �rst examines the
number of pixels that are included in the identi�ed solar PV array
contours. �en, SolarFinder performs a union operation to add up
all the contours for the same roo�op to report the solar array size.
We �nd that SolarFinder is able to report a JSI as 63.5% using only
low resolution satellite imagery.
Predicting the orientations of solar PV arrays. We employ the
metric—MOE explained section 6.3 to quantify the accuracy for
SolarFinder to predict orientations for solar PV arrays. SolarFinder
learns the orientation by analyzing the di�erence in degrees be-
tween the minimum bounding rectangle (MBR), and the minimum
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Figure 12: �e comparison of solar generation prediction be-
fore and a�er integrating with SolarFinder.

area rectangle for a counter and its roo�op. We �nd that SolarFinder
yields a MOE as 3.72 �.
Results: In addition to accurately detect solar PV arrays, SolarFinder
is able to report accurate physical characteristics, e.g., size, orientation,
shade, etc. simultaneously.

6.4.6 Integrating with Solar Forecasting. Eventually, we inte-
grate SolarFinder’s output with the most recent solar generation
capacity prediction work [11, 12]. In this case, we apply the
SolarFinder-assisted solar predicting modeling on Dataset 3 as dis-
cussed in prior section 6.1. Figure 12 shows the MAPEs of 10 homes
solar generation prediction before and a�er calibrating forecasting
models using SolarFinder’s results. As shown in Figure 12, with
�ne-tuning using SolarFinder’s results, the solar generation pre-
diction models in [11, 12] are able to report small MAPEs over all
the 10 solar-powered homes. �is is because SolarFinder learns
accurate solar installation characteristics using the hybrid approach
from satellite images as shown in the prior section, and these char-
acteristics (parameters) are helpful to improve the calibration of
solar generation prediction models.
Results: SolarFinder-assisted solar forecasting models have smaller
MAPE, and yields be�er solar generation prediction accuracy.

7 RELATEDWORK
�ere is signi�cant prior work on detecting solar PV arrays us-
ing satellite images. �e prior research employs either ML clas-
si�ers [22, 24, 25] or deep learning models [15, 23, 33] to predict
the existence of solar PV arrays on the roo�op images. �e most
notable recent work[15, 22, 24, 33] all use VHR satellite images and
evaluate their approaches using very limited dataset due to the high
expense to buy or download those VHR images. In addition, prior
work [15, 22–25, 33] are also limited to some speci�c regions and
do not scale up. Instead, our new hybrid approach—SolarFinder
is built on top of the insights from a larger free publicly-available
regular or low resolution satellite image dataset across 13 di�erent
regions from 8 states of U.S. SolarFinder shows that we can build a
hybrid approach that combines bene�ts from both of ML models
and CNNs models. By doing this, we build a general approach
that achieves a be�er accuracy as 3 times be�er MCC than the
most notable work [15, 33]. In addition, SolarFinder can pro�le
each solar deployment by learning its physical characteristics (i.e.,
size, orientation, and shade). And our evaluation results show that



SolarFinder-assisted solar generation model has be�er accuracy
than the original models [11, 12].

8 CONCLUSION
We design a new hybrid approach—SolarFinder to automatically
detect solar PV arrays using publicly-available satellite images with-
out any extra cost. For a given region, SolarFinder works by �rst
automatically segment satellite images to roo�op images. Second,
SolarFinder leverages K-means to automatically segment roo�op
images into object contours. �en, SolarFinder employs a linear
regression hybrid approach that integrates SVM-RBF model with
CNNs model to detect solar PV arrays in each contour. Finally,
SolarFinder applies solar array size, orientation and other char-
acteristics estimators to further pro�le each solar site. We evalu-
ate SolarFinder using 269,632 public satellite images that include
1,143,636 contours from 13 geospatial regions in the U.S. We �nd
that pre-trained (or unsupervised) SolarFinder yields a MCC of
0.17, which is 3 times be�er than the most recent pre-trained CNNs
approach and is the same as a supervised CNNs approach.

We plan to implement the optimization for SolarFinder’s post-
processing module to report more accurate pro�ling information,
for instance, shade area, which is a critical factor that a�ect solar
generation. We also plan to learn the accuracy of SolarFinder under
new situations, such as 1) home owners install Tesla roof shin-
gles [35] rather than regular solar PV arrays, 2) the adoption rate
of solar PV arrays increases in a region over time. To detect Tesla
roof shingles, SolarFinder needs to include new features that can
identify the new Tesla roof shingles. Overall, SolarFinder should
achieve higher accuracy in a region when the ratio of solar-powered
homes to non-solar powered homes increasing.
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