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ABSTRACT
Distributed solar energy resources (DSERs) in smart grid systems
are rapidly increasing due to the steep decline in solar module
prices. This DSER penetration has prompted utilities to balance the
real-time supply and demand of electricity proactively. A direct
consequence of this is virtual power plants (VPPs) that enable solar
generated energy trading to mitigate the impact of the intermittent
DSERs while also bene�ting from distributed generation for more
reliable and pro�table grid management. However, existing energy
trading approaches in residential VPPs do not actually allow DSER
users to trade their surplus solar energy independently and concur-
rently to maximize bene�t potential; they typically require a trusted
third-party to play the role of an online middleman. Furthermore,
due to a lack of fair trading algorithms, these approaches do not
necessarily result in “fair” solar energy saving among all the VPP
users in the long term.

We propose SolarTrader, a new solar energy trading system that
enables unsupervised, distributed, and long term fair solar energy
trading in residential VPPs. In essence, SolarTrader leverages a
new multi-agent deep reinforcement learning approach that en-
ables peer-to-peer solar energy trading among di�erent DSERs to
ensure that both the DSER users and the VPPs maximize bene�t.
We implement SolarTrader and evaluate it using both synthetic
and real smart meter data from 4 U.S. residential VPP communities
that are comprised of ⇠229 residential DSERs in total. Our results
show that SolarTrader can reduce the aggregated VPP energy con-
sumption by 83.8% when compared against a non-trading approach.
Furthermore, SolarTrader achieves a ⇠105% average saving in VPP
residents’ monthly electricity cost. We also �nd that SolarTrader-
enabled VPPs can achieve a fairness of 0.05, as measured by the
Gini Coe�cient, a level equivalent to that achieved by the fairness-
maximizing Round-Robin approach.
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• Computing methodologies! Multi-agent planning; Mod-
eling methodologies;Model veri�cation and validation.
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1 INTRODUCTION
The number of solar-powered homes is rapidly increasing due to a
steep decline in solar module prices. To illustrate, the cost of solar
energy in $/W dropped an estimated 80% from 2010 to 2018 [9],
resulting in a 700% increase in distributed solar energy resources
(DSERs) in the U.S. over the same period [17]. This solar penetra-
tion has prompted utilities to employ DSER management for load
reduction, and has given rise to Independent System Operator (ISO)
for wholesale market bidding participation. As a result, U.S. utilities
have demonstrated an interest in deploying virtual power plants
(VPPs) to confront and adapt to these changes. As shown in Fig-
ure 1, a VPP is an aggregation of di�erent types of power generation
sources, including traditional energy sources and DSERs, which
employing the same type of electricity pricing scheme, demand
response (DR) approaches, and other net load shifting schemes to
ensure the stability and reliability of residential grid management
functions. Typical DSERs in residential VPPs can be comprised of
small-scale rooftop residential solar photovoltaic (PV) deployments,
community shared solar arrays (CSSA) [11, 14], solar farms, and
solar energy storage systems (e.g., electric vehicles (EVs), battery
storage arrays). VPPs enable the individual DSER owners to have
access and visibility across the entire energy market, and bene�t
from the market to maximize their revenue potential [27]. In ad-
dition, grid operation can also bene�t from the collaborative and
more e�cient energy usage of all-VPP available DSER generation
and storage capacity.

A key goal in the management of VPPs is enabling a solar gen-
erated energy trading platform that achieves the above bene�ts
for both VPPs and the DSER users. Recently, researchers in the
areas of micro-grid [18, 19, 38] and community shared solar ar-
rays (CSSA) [11, 14] have proposed several solar energy trading
approaches [7, 8, 10, 21, 22, 26, 30, 34, 36, 37] that are candidates
for use within a VPPs’ solar energy trading system. Unfortunately,
these solar energy sharing approaches are not able to extract max-
imum bene�t from the DSERs such as rooftop solar PV arrays,
CSSA [11, 14], and other solar energy storage systems. Their pri-
mary drawback is an inability to allow DSER users to trade their
surplus solar energy independently and concurrently to maximize
bene�ts from solar generated energy, instead requiring a trusted
third-party, such as an ISO or the utilities, to play the role of mid-
dleman to supervise the trading processes.
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Figure 1: The overview of the virtual power plant (VPP).

In this paper, we propose a new solar energy trading system
called SolarTrader that can enable unsupervised, distributed, scal-
able, and long-term fair solar energy trading in residential VPPs.
We model a VPP system as a decentralized collaborative environ-
ment. Each DSER is abstracted as an agent that is collaboratively
evolving in a common environment, the VPP, with other agents.
In essence, SolarTrader leverages multi-agent deep reinforcement
learning (MADRL) to automatically learn a common and collab-
orative policy in a shared VPP environment. This policy is then
deployed on DSER agents without additional training. The policy
is both trained and deployed using a peer-to-peer (P2P) approach
manner such that all the DSER agents can trade their solar gener-
ated energy concurrently and independently, working as a fully
distributed system. Through reward and penalty learning, Solar-
Trader ensures fairness of solar energy trading outcomes for all the
DSER agents in the long term.

To better understand the potential and limitations of SolarTrader,
we implemented a SolarTrader prototype and evaluate it using smart
meter energy data from ⇠229 homes of 5 U.S. residential VPPs lo-
cated in Colorado, Massachusetts, New York, California, and Texas.
Our results show that SolarTrader can help DSER users reduce
their net grid energy consumption by 109.8% when compared to a
non-sharing approach. We also �nd that SolarTrader enabled VPPs
can yield a Gini coe�cient (a standard measure of an approach’s
fairness performance) of 0.05, which is the same as that of the
most-recent Round-Robin (RR) trading approach that has the best
fairness performance in long term trading. Speci�cally, we evaluate
SolarTrader using multiple ways:

• We compare and validate SolarTrader’s performance using a wide
set of metrics for a synthetic smart meter dataset comprised of
100 residential DSERs from Massachusetts.

• We evaluate SolarTrader’s performance using a real smart meter
energy dataset which consists of 119 solar-powered homes from
4 di�erent residential VPP communities located in Colorado, New
York, California, and Texas using PecanStreet API [5].

• We further validate SolarTrader’s trading performance using
real-time smart meter data from 10 DSERs from Massachusetts.

Through these empirical studies, we demonstrate that a SolarTrader-
enabled VPP is capable of enabling its users to trade solar energy
with their neighbors more e�ciently to achieve optimal monetary
bene�ts while empowering the VPPwith reliable, online, distributed
DSER management.
Releasing Datasets and Code. We release all the datasets that
are comprised of smart meter data over 229 DSERs and the source
code of SolarTrader on our website [33].

Figure 2: (a) The overview of a residential DSER, and (b) the
operation pipeline of a dedicated solar PV array system.

2 BACKGROUND
2.1 Problem Statement
Implementing an e�cient residential VPP involves addressing mul-
tiple goals. First is a new approach that can automatically gather
and abstract all the distributed solar energy resources (DSERs) such
that each DSER can be abstracted as an agent in the collaborative
VPP environment. Next is a set of new solar energy trading algo-
rithms for the agents to trade their surplus energy in a distributed
and P2P manner. In addition, we need to learn trading algorithm
performance, including user monetary bene�ts, long term fairness,
and VPP management bene�ts, when applying each energy trading
approach. We outline our speci�c approach for achieving each of
these goals below.

Formally, given a VPP +8 , we abstract each DSER ⇡(⇢'8 in +8 as
an agent 08 such that all the DSERs can trade their surplus energy
concurrently in the multi-agent VPP system +8 . The objective is to
�nd the minimum energy cost of its operations over time ) in the
entire VPP environment, which can be de�ned as follows,

1

#
·

)’
8=0

#’
:=0

[⇢6A83: (8) · %6A83: (C) � ⇢CA034: (C) · %CA034: (C)

�⇢5 443102:: (C) · %5 443102:: (C))]
(1)

where ⇢6A83: (C), ⇢CA034: (C), and ⇢5 443102:: (C), represent the elec-
tricity that the agent : draws from the grid, trades with its
neighbors, and feeds back to the grid, respectively, at moment C .
%CA034: (C), %6A83: (C), and %5 443102:: (C) denote the electricity cost
in $ per kWh when the agent : draws from the grid, trades with its
neighbors, and feeds back to the grid, respectively.

2.2 System Model and Pricing Model
SystemModel. A general DSER in residential VPPs is a residential
rooftop solar PV system that is typically comprised of solar PV
arrays, a smart hybrid inverter, and battery arrays. Figure 2 (a) illus-
trates the system overview of a rooftop solar PV system in daytime
when solar generation is available, and Figure 2 (b) shows a dedi-
cated (non-sharing) solar PV system operation pipeline. As we had
discussed in Section 1, instead of feeding excess solar generated en-
ergy back to grid, sharing surplus solar energy with neighbors can
o�er greater monetary bene�t for DSER owners and also help VPPs
better manage grid operation. By enabling solar generated energy
trading in a VPP when excess solar energy is available, selling solar
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Figure 3: Comparison of di�erent solar energy trading approaches based on (a) the amount of monthly aggregated energy
consumption, (b) monthly electricity bill saving, and (c) the Gini Coe�cients.
generated energy to homes that have de�cit of energy becomes
possible. We discuss the details of this approach in Section 4.
Pricing Model. In this paper, we assume that all the DSERs use
regular retail electricity pricing schemes. The utilities purchase
net-metered electricity at wholesale prices and sell it to VPP resi-
dents at retail prices [2, 3]. Instead of purchasing electricity from
utilities at retail prices, SolarTrader enables VPP users to purchase
electricity from neighbors that have surplus electricity at a price
that is higher than the utilities’ wholesale price but signi�cantly
lower than the utilities’ retail price. We also assume VPP users have
a billing agreement among all the DSERs to determine the costs of
energy borrowed or lent. Finally, the micro-payments necessary for
purchasing electricity can be executed using third-party payment
systems such as PayPal [4], Venmo [6], etc.

2.3 Comparing Current Approaches
We examine design alternatives for solar generated energy trading
approaches, including the dedicated (non-trading) approach, the
pure always sharing approach, the �rst-come-�rst-service (FCFS)
sharing approach, and the round-robin (RR) sharing approach. In
doing so, we are able to review a wide range of the most recent
sophisticated solar energy sharing or trading approaches [7, 8, 10,
21, 22, 26, 30, 34, 36, 37] in micro-grids and community shared
solar PV systems that may be adapted in VPP solar energy trading
systems.

Figure 3 quanti�es the e�ectiveness of three approaches by com-
paring the amount of electricity drawn from the grid, the reduction
in their monthly electricity bills, and the Gini Coe�cient (a.k.a. Gini
Index) of four di�erent VPPs from New York, California, Colorado
and Austin, respectively. We report the Gini coe�cient (GC) [1],
which is a measure of statistical dispersion intended to measure the
degree of inequality in a solar energy trading outcome in residential
VPPs. GCs range from 0 to 1, where 0 indicates a perfect equality,
i.e., each VPP user is receiving an equal electricity saving from
solar energy trading, and 1 indicates the worst equality, i.e., only
a small group of VPP users are receiving the entire energy saving
bene�ts. GC is discussed further in Section 6. To generate Figure 3,
we use smart meter data from 119 residential DSERs which we
downloaded from PecanStreet Dataport [5]. Speci�cally, the dataset
contains 6-month data for 25 homes from New York, 5-year data for
23 homes from California, 1-year data for 46 homes from Colorado,
and 1-year data for 25 homes from Austin. We pre-process the smart
meter data into 1 hour granularity to benchmark the performance
of the three di�erent approaches as shown in Figure 3.

Pure Sharing. In this case, a DSER �rst consumes solar generated
electricity locally and then stores surplus solar generated energy
into its battery for future use. After the local battery is already fully
charged, it starts to sell its excess solar energy to its neighbors who
have de�cit energy. Thus, the DSER only sends the surplus solar
energy after trading with its neighbors back to the grid. We assume
that all selling and buying requests are matched perfectly. In doing
so, we simulate the maximum monetary bene�ts that users can
receive from solar energy trading.
First-Come-First-Sharing (FCFS). Similar to pure sharing, FCFS
consumes solar generated energy in the sequence of meeting load
demand, charging battery, trading with neighbors, and feeding back
to the grid. Each DSER selling energy to its neighbors maintains a
demand queue. All trading requests are enqueued andmet according
to their arriving order.
Round-Robin (RR) Sharing. The major di�erence between RR
and FCFS is how a DSER maintains its service request queue. RR
enables DSERs to trade with their neighbors with de�cit energy
using a �xed amount of excess solar generated energy divided
into equal portions (quanta) assigned to neighbors arranged in
round-robin order. This approach handles trading requests without
considering their arriving sequence.
Observation: Our results show that the aggregated electricity
drawn from the grid per DSER per month in 4 di�erent VPPs has
signi�cantly dropped after applying the 3 trading approaches, in-
cluding pure sharing, RR, and FCFS approaches. Specially, as shown
in Figure 3 (a), pure sharing approach reports 21.39%, 6.89%, and
12.28% (with the average of 13.52%) net demand reduction in the
VPP communities of New York, California, and Austin, respectively.
In addition, by leveraging more e�cient solar surplus energy trad-
ing approaches of RR and FCFS, DSERs can reduce the aggregated
grid demand per DSER per month by the average of 94.66% and
97.28% in the 4 regions, respectively. Figure 3 (b) also shows that
users can receive 3%, 88.53%, and 92.16% average savings in their
monthly electricity bills per household when applying pure shar-
ing approach, RR, and FCFS in the four VPPs. In addition, we also
observe that RR and FCFS help VPP users to achieve more fair mon-
etary bene�ts. Compared to pure sharing, RR and FCFS decrease
their average GC by 71.04% and 66.92% over 12 months in the 4 VPPs
as shown in Figure 3 (c). Thus, these native trading approaches can
help mitigate bias in solar energy trading systems.
Insights from the Above Approaches: The above results and ob-
servations shed the following important insights. First, the most
recent trading approaches in the related areas of micro-grid and
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Figure 4: The system overview of the distributed trading ap-
proach in SolarTrader.

community-shared solar may have signi�cant potential for net en-
ergy savings. Enabling the trading of surplus solar generated energy
with DSER neighbors in VPPs has the potential to provide users ad-
ditional monetary bene�ts. Second, enabling solar generated energy
trading with neighbors can also mitigate unfairness in long-term
energy saving outcomes observed in traditional non-sharing and
pure sharing approaches. RR is the most stable approach to bench-
mark a trading algorithm’s fairness. These valuable insights will
guide the development of our proposed technique, SolarTrader.

3 SOLAR ENERGY TRADING CHALLENGES
In this section, we highlight the major challenges in designing and
implementing SolarTrader.
Solar Energy Measurement. To enable solar energy trading in
a VPP, the �rst challenge is to accurately describe the available
amount of solar energy that may be traded. Prior solar energy
trading approaches [7, 8, 10, 21, 22, 26, 30, 34, 36, 37] do not consider
the practical limitations, such as battery charging/discharging loss,
inverter loss, and weather conditions (primarily cloud/sky cover
data relevant in the day-ahead energy market), when designing
their solar energy trading techniques. The consideration of these
issues are central to SolarTrader’s design.
Unequal User Electricity Saving Bene�ts. Many existing solar
energy sharing systems [8, 21, 22, 26, 30] in the areas of micro-
grid and community shared solar arrays, are built on top of either
centralized or priority-based sharing (bound to either hardware or
software) approaches. From a long-term (e.g., 1 month or 1 year)
perspective, these approaches do not necessarily result in“fair” solar
energy sharing among the VPP users. As noted in the released
guide [14] of National Renewable Energy Laboratory (NREL), new
energy program developers need to ensure all the participants have
equal opportunity to join and receive bene�ts. SolarTrader allows
VPP users to achieve long term fair energy saving by enabling
concurrent and distributed trading with neighbors.
Inaccurate Net Load Forecasting. Prior approaches [7, 10, 21,
22, 26, 30, 34, 36] leverage multiple strategies to maximize a VPP
user’s individual monetary bene�t without collaboration among
the distributed DSERs in a VPP. However, these approaches can
result in frequent “unexpected” �uctuations in net, aggregated elec-
tricity demand for the VPP. Furthermore, these approaches can
also prevent VPP users from receiving the bene�t obtained from
optimal management of all the available DSERs in a VPP, and can
decrease accuracy when forecasting aggregated load demand. So-
larTrader leverages deep reinforcement learning-based concurrent
and collaborative trading among all the DSERs to mitigate this
issue.

Inaccurate Solar Generation Forecasting. Several approaches
in the literature have proposed leveraging the day-ahead solar en-
ergy trading market [7, 8, 10, 21, 26, 34, 36, 37]. The solar energy
generation forecasting in day-ahead market depends on many fac-
tors, such as weather conditions (primarily, sky cover), shading
due to nearby objects, atmospheric conditions, generation ine�-
ciency, and physical properties of the DSERs. The prior approaches
have either not considered these factors or have not modeled the
e�ect of those factors. To ensure the e�ciency of its online solar
energy trading platform, SolarTrader integrates a more accurate
solar generation forecasting model.

4 SOLARTRADER
To address the challenges involved in solar energy trading, we build
SolarTrader a new VPP solar energy trading system that enables
users to maximize the bene�ts o�ered by solar energy equally
while also allowing the residential VPPs to manage the grid more
e�ciently.

4.1 System Design
As discussed in Section 1, residential VPPs are mainly comprised
of small-scale rooftop solar PV systems, community shared solar
PV systems, EVs, etc. We model a residential VPP environment as
a multi-agent system (MAS). As shown in Figure 4, we �rst gather
and abstract all the DSERs into MAS agents such that each DSER
can be abstracted as an agent in the collaborative VPP environment.
This MAS collaborative environment enables the concurrent and
distributed energy trading transactions among all DSER agents in a
VPP. We then present a set of new energy trading algorithms that
leverages a deep reinforcement learning approach for DSER agents
to trade their surplus energy in a distributed and peer-to-peer (P2P)
manner. In essence, as shown in Figure 5, we �rst build a discrete
state space that can represent all the possible states for DSER agents
in the VPPs. Note that each DSER agent must stay in a single state
at any time. Then, we build a set of discrete actions for each DSER
agent. Each DSER agent may choose one action from this action
space based on its current and prior state. We then utilize multiple
training and optimization algorithms to learn a stable and accurate
reward and penalty model that can be used to evaluate the actions
of each agent. Eventually, we employ a scalable hyper-parameter
tuning approach to further improve SolarTrader’s performance.

4.2 Building State Space
We design a discrete representation for each agent state, including
local agent states and global VPP states. The local agent states are
designed to track the dynamics of each agent’s internal states, such
as load demand, energy consumption, solar generation, and battery
storage capacity. The VPP environment states aim at providing each
agent with a real-time perspective of the entire VPP environment,
which may include aggregated VPP energy consumption and Gini
Coe�cient among all DSERs. Speci�cally, the state (:8 of agent : at
the time 8 can be de�ned as a 6-tuple of tensors,
• Energy Consumption. A tensor representing each agent’s net
load demand which is the total electricity demand in the VPPs
minus the solar-generated electricity. This demand is met by a
VPP using its traditional electricity generation sources, such as
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Figure 5: An overview of the multi-agent deep reinforce-
ment learning process in SolarTrader.

natural gas, hydropower, and imported electricity from outside
SolarTrader.

• Net Load Demand. A tensor representing each agent’s actual
energy consumption—the total electric demand in the system.
This energy consumption is provided by VPPs using a mix of
traditional and renewables energy sources.

• Solar Generation. A tensor representing each agent’s actual
solar generation. This energy is generated by the installed solar
PV arrays and determined by many local physical characteristics,
such as tilt, size, orientation, shade from nearby trees or tall
buildings, cloud/sky cover, inverter ine�ciency etc.

• Battery Capacity Level. A tensor representing each agent’s
local battery energy storage level. The battery size may vary at
di�erent agents. For the community shared battery array users,
this tensor represents only their subscribed portions.

• Aggregated Grid Energy Consumption. A tensor represent-
ing the global VPP environment stability using the grid net en-
ergy consumption. This tensor may include the variance or stan-
dard deviation of the net energy consumptions. The goal of VPP
maintenance is to reduce peaks or spikes in this net consumption
curve by making more e�cient use of all the available DSERs.

• DSERs’ Fairness. A tensor representing the DSERs’ fairness
when participating in solar energy trading processes of Solar-
Trader. This tensor is used to improve and ensure the long term
fairness of trading outcomes.
We observed that by separating the status information into mul-

tiple channels rather than mixing them in a single tensor, our DSER
agents learn faster and achieve a more stable policy. Note that
recording the above states do not require any specialized hardware
or software to be installed by VPP users. These states can be moni-
tored and reported at a �ne-grained level by smart energy meters
(a.k.a net meters) that are already deployed by the utilities.

4.3 Building Action Set
We next build the discrete action set for each DSER agent. Speci�-
cally, in the VPP solar energy trading environment, each agent 0:
has the following multiple choices to manage and optimize its solar
energy trading perspectives at moment C ,
• Action 1: Consuming Solar Generated Energy. A tensor rep-
resenting the DSER agent 0: consumes solar generated energy
to meet its local electricity demand.

• Action 2: Charging Battery. A tensor representing the DSER
agent, 0: has surplus solar generated electricity after meeting its
local demand. The local battery is not fully charged, and agent
0: is going to charge its battery until full for future usage.

• Action 3: Discharging Battery to Meet Local Demand. A
tensor representing the DSER agent 0: has decided to discharge
its battery stored energy to meet its local electricity demand.

• Action 4: Discharging Battery to Trade with Neighbors. A
tensor representing the DSER agent 0: has decided to discharge
its battery stored energy to lend to its neighbors. Note that at
nighttime when solar energy is unavailable, the DSER agent 0:
should not perform this action since storing solar energy for
future usage is always providing the DSER agent with the best
monetary bene�t which is equivalent to retail price value.

• Action 5: Trading Solar Energy by Lending to a Neighbor.
A tensor representing the DSER agent 0: is having excess solar
generated energy and decide to lend this surplus energy to its
neighbors at moment C . In this case, the solar generated electricity
and the battery stored energy has already meet the demand of the
DSER agent 0: . Thus, the DSER agent 0: is o�ering the surplus
solar generated energy to its neighbor DSER agent 0; which has
de�cit energy. Note that the DSER agent 0: may make o�ers to
multiple de�cient neighbors simultaneously.

• Action 6: Trading Solar Energy by Borrowing from a
Neighbor. A tensor representing the DSER agent 0: is having
positive de�cit energy at moment C . In this case, the solar gen-
erated electricity and the battery stored energy can not meet
the demand of the DSER agent 0: . Thus, the DSER agent 0: is
requesting energy from another neighbor agent 0; which has
surplus solar energy to trade. Note that the DSER agent 0: may
send requests to multiple neighbors simultaneously.

• Action 7: Feeding Excess Solar Generated Energy to the
Grid. A tensor representing the DSER agent 0: is feeding surplus
energy back to the grid. In this case, the DSER agent 0: ’s battery
is fully charged, and none of its neighbors are requesting energy
trading. The DSER agent 0: will receive a green credit in its next
monthly electricity bill which is paid based on the wholesale
electricity price value.

• Action 8: Drawing Electricity from the Grid. A tensor rep-
resenting the DSER agent 0: is to draw electricity from the grid
at moment C . In this case, after using solar generated energy and
the traded solar energy from its neighbors, the DSER agent 0:
is still having de�cit energy situation. Drawing electricity from
the grid will be charged according to the retail electricity price.

4.4 Learning Reward and Penalty
We next build and learn an optimal reward and penalty model. The
objective function of SolarTrader at each DSER agent is to minimize
the energy costs of its operations over a period of time ) , and can
be formulated as min-'2>BC at agent : as follows:

'2>BC: =
1

)
·

)’
C=0

(⇢6A83: (C) · %6A83: (C) � ⇢CA034: (C)·

%CA034: (C) � ⇢5 443102:: (C) · %5 443102:: (C))
(2)

where ⇢6A83: (C), ⇢CA034: (C), and ⇢5 443102:: (C) describe the elec-
tricity amount of the agent : at moment C draws from the grid,
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trades with its neighbors, and feeds back to the grid, respectively.
%6A83: (C), %CA034: (C), and %5 443102:: (C) denote the paid electricity
price in $ per kWh when the agent : is drawing from the grid, trad-
ing with its neighbors, and feeding back to the grid, respectively.
Note that %CA034: (C) would be a negative value when the agent : is
requesting energy from its neighbors. Similarly, %CA034: (C) should
be a positive value when the agent : is lending its surplus energy
to its neighbors.

Algorithm 1: The Trading Algorithm of SolarTrader
Input: State ( , Action �, Reward '
Output: Optimal Trading Policy %
Data: State ( , Action �, Reward '
/* Load Action Space, State Space */

load tensor vector : �2C8>= , (C0C4  SolarTrader
while true do

(C0C4:  the VPP environment
�2C8>=:  getLegalAction((C0C4: )
if '0=3><=D<14A� n then

02C8>=  RandomPick(�2C8>=: )
else

02C8>=  BestActionFromPolicy(�2C8>=: ,
' (�2C8>=: ))

(C0C4=4GC  takeAction(02C8>= )
/* Using PPO, PG, APPO, DPPG to train & optimize reward */

'4F0A3>?C8<0;  SelectOptimalReward(%%$ , 02C8>= )
/* Fine-turning parameters using grid search */

tuningGridSearch((C0C4: , �2C8>=: , '4F0A3>?C8<0; )
?  AgentLearning((C0C4: , �2C8>=: , '4F0A3>?C8<0; )

Because DSER agents in SolarTrader are designed to be coopera-
tive, we develop a global shared reward function. This global shared
objective �nds the minimum energy cost of operations across the
entire VPP environment, and can be de�ned as follows:

'0;; = U · 1

#
·

#’
:=0

'2>BC: + V ·+0A + W ·⌧⇠ (3)

where # denotes the amount of agents, +0A and ⌧⇠ denote the
variance in the aggregated net grid energy consumption and the
fairness metric represented by the Gini Coe�cient (GC) of monthly
cost saving, respectively, across all the DSER users. U , V , and W are
discount factors.

In the reward learning process of SolarTrader, we observe mul-
tiple sub-optimal reward outcomes. For instance, a DSER agent is
requesting electricity from both the grid and its neighbors when
its neighbors are still having surplus solar generated energy. This
occurs due to the nature of SolarTrader’s distributed and concurrent
trading actions. To address such issues, we develop the following
penalty function for each reward learning episode:

%2>BC: =

8>><
>>:
_ ·

��'2>BC: �� , '2>BC: < 0
` · '2>BC: , '2>BC: > 0
'2>BC: , '2>BC: = 0

(4)

Here, _ and ` denote the weights of encouraging and penalizing
the actions for the DSER agent : . We leverage the policy gradient

103

104

PPO APPO PG DDPG

T
ra

in
in

g
 T

im
e
(S

e
co

n
d
s)

Algorithms

-3*104

-2*104

-2*104

-2*104

-1*104

 0  300  600  900

R
e
w

a
rd

 M
e
a
n

Episodes

DDPG
PG

PPO
APPO

(a) Training Time (b) Reward Mean
Figure 6: The comparison of 4 di�erent training algorithms
in multi-agent reinforcement learning of SolarTrader.

methods and the grid search approaches discussed in Section 4.5
and Section 4.6 to learn the optimal values for the discount factors.

4.5 Training and Optimizing Policy
We then train all the DSER agents using multiple widely used policy
gradient methods, including Policy Gradients (PG) [35], Proximal
Policy Optimization (PPO) [31], Asynchronous Proximal Policy Op-
timization (APPO) [25], and Deep Deterministic Policy Gradients
(DDPG) [20], to compute and optimize the optimal policy of the
solar generated energy trading approach in SolarTrader. PG [35]
describes its policy explicitly using function approximators and is
also independent of speci�c value functions. The policy parameters
are updated based on the observation of expected reward gradients.
PPO [31] is a policy gradient method that optimizes a “surrogate”
objective function using stochastic gradient ascent (SGD). In addi-
tion, PPO’s clipped objective supports multiple SGD passes over
the same batch of experiences. APPO [25] is adapting both policy
gradient and Q—value learning algorithms to learn using many
parallel simulator instances asynchronously. DDPG [20] is a model-
free deterministic policy gradient method that is mainly applied in
continuous action space problems. And it has combined the ben-
e�ts from both the actor-critic approaches and Deep Q Network
(DQN). Figure 6 (a) and (b) show the comparison results of applying
di�erent policy gradient methods for SolarTrader. Interestingly,
the policy gradient methods—DDPG and PG achieved the short-
est training time, while, PG and PPO yielded the highest average
reward mean after training over ⇠100 episodes. Thus, PG is the
best overall performing policy gradient method regrading training
time and average reward mean, and is eventually selected to help
SolarTrader train and optimize its reward policy.

4.6 Tuning Hyper-parameters
The performance of DSER agent policies are sensitive to the hyper-
parameter values chosen. Unfortunately, there is no simple ap-
proach that allows DSER agents to understand whether a speci�c
value for a given parameter would improve total reward. To ad-
dress this issue and further increase SolarTrader’s performance, we
leverage a tuning approach to optimize the SolarTrader’s hyper-
parameters, such as such as discount factors associated with re-
wards and penalties, and the learning rates. In particular, we employ
grid search which allows us to specify the range of values to be
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considered for each hyper-parameter. The grid search process con-
structs and evaluates our model using every combination of the
hyper-parameters. Finally, we employ cross-validation to evaluate
each learned model.

5 IMPLEMENTATION
We implement both a SolarTrader simulator and prototype in
python using widely available open-source frameworks, including
osBrain [23], Pandas [24], Scikit-learn [32] and PyCUDA [15, 28].
The simulator takes smart meter energy traces as input and applies
solar energy trading techniques outlined in Section 2. In addition
to the simulator, we also build a prototype SolarTrader using the
scalable reinforcement learning framework, RLlib [29]. This pro-
totype is able to trade solar energy in real-time using online So-
larTrader. We employ a Multi-agent Deep Reinforcement Learning
setup, which enable SolarTrader to train, learn and optimization a
distributed trading model. The prototype uses actual smart meter
data of 119 homes from 4 di�erent U.S. VPP communities. In ad-
dition, SolarTrader queries the real-time eGauge [16] smart meter
data for an entire VPP in Massachusetts every minute. We imple-
ment SolarTrader’s algorithms and its optimizations. We use the
scalable deep reinforcement learning python library RLlib [29] to
develop our energy trading solutions in SolarTrader. RLlib sup-
ports TensorFlow, TensorFlow Eager, and PyTorch. RLlib provides
multi-ways for us to customize the training process of the target en-
vironment modeling, neural network modeling, action set building
and distribution, and optimal policy learning. We leverage training
algorithms, including Deep Deterministic Policy Gradients (DDPG),
Asynchronous Proximal Policy Optimization (APPO), Proximal Pol-
icy Optimization (PPO), and Policy Gradients (PG), to train and
�ne-tune a stable global reward policy. Eventually, we schedule the
batch jobs on our server to compare the performance of all the 9
di�erent solar energy trading approaches. The evaluation testbed
machine con�guration includes 2x Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10GHz, an nVidia TITAN X (Pascal) (x8) GPU, and 128GB
of DRAM, and runs CentOS 7 Linux.

6 EXPERIMENTAL EVALUATION
Below we describe our datasets, experimental setup, metrics used
to evaluate our approaches, and evaluation results.

6.1 Datasets
Dataset 1. We downloaded 1 minute level circuit-level electric-
ity usage and solar generation from 119 rooftop solar-powered
houses using Street Dataport [5]. For each solar-powered home
listed in this dataset, we can access its metadata data including
street address, �oor plan, solar generation capacity, and installation
details. Specially, this dataset contains 6 months of energy data
for 25 homes in New York, 5 years energy data for 23 homes in
California, 1 year data for 46 homes in Colorado, and 1 year data
for 25 homes in Texas. We preprocess the minute-level energy data
to generate hour-level data for analysis and evaluation.
Dataset 2. We also download minute-level netmeter recorded en-
ergy data of 100 residential DSERs for 1 year from the dataset which
is released by the most recent solar forecasting work [12, 13]. This
dataset has four dimensions including timestamps, net demand,

ground-truth solar generation, predicted solar generation using
the models in work [12, 13]. In addition, this dataset contains de-
tailed metadata of the physical characteristics for each solar site,
including size, orientation, tilt, and inverter information.
Dataset 3. We also use live smart meter data from 10 solar-powered
residential DSERs from eGuage [16] to evaluate SolarTrader and
other trading approaches. This online VPP dataset has detailed
metadata of the physical characteristics for each DSER, including
solar array size, orientation, tilt, inverter ine�ciency, and etc.

6.2 Experimental Setup
We implement and compare 9 di�erent solar energy trading ap-
proaches, including non-sharing, pure sharing, Round Robin (RR),
First Come First Sharing (FCFS), Shortest Remaining First (SRF),
Longest Remaining First (LRF), Longest Sharing First (LSF), Shortest
Sharing First (SSF), and the proposed SolarTrader approaches.

6.3 Evaluating Metrics
Gini Coe�cient (GC, a.k.a. Gini Index). To access the fairness
of our implemented approaches, we employ GC as the measurement
of statistical dispersion intended to describe the inequality of VPP
user energy trading bene�ts in their solar energy trading. Note
that the GC value is between 0 (indicating a perfect equality) and 1
(indicating the worst equality). It can be formally de�ned as follows:

⌧⇠ =

Õ#
8=1

Õ#
9=1

��-8 � - 9
��

2 ·Õ#
8=1

Õ#
9=1 - 9

=

Õ#
8=1

Õ#
9=1

��-8 � - 9
��

2# ·Õ#
8=1 -8

(5)

where # denotes the amount of agents in the VPP and-8 represents
the the energy saving at the agent 8 .
Mean Absolute Percentage Error (MAPE). To quantify the ac-
curacy of net load forecasting after applying our di�erent energy
trading approaches, we compute and use the MAPE between the
ground truth net load consumption and that of the di�erent ap-
proaches, over all time intervals C . A lower MAPE indicates higher
accuracy with a 0%MAPE being perfectly accurate net load demand
pro�ling and forecasting. In doing so, we are examining the stability
of the net load forecasting of the VPPs when employing di�erent so-
lar surplus energy trading approaches. MAPE is formally computed
as follows:

"�%⇢ =
100

=

=’
C=0

| (C � %C
(C

| (6)

where = describes the duration of net load demand (C , and %C indi-
cates the predicted net load demand at moment C .
Dicke—Fuller (DF) Test. Time series net demand in smart grid typ-
ically follows a combination of deterministic trend and stochastic
trend. The Dickey—Fuller (DF) test aims at testing the null hypothe-
sis that assumes a unit root is present in a given time-series dataset.
This unit root is the measure that can be leveraged to test whether a
times series data is stationary, trend-stationary, or predictable. We
employ the DF test to quantify a solar energy trading approach’s
performance as it informs VPP’s peak power reduction and net de-
mand forecasting. The net grid demand can be formally described
using the following model:
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Figure 7: Energy drawn from the net grid over hours in a day (top) , energy drawn from the grid over days of a week (middle),
energy saving from the grid over hours in a day (bottom).

#C = U + V · C + q · #C�1 + 4C (7)

where #C denotes the net demand of the VPP at moment C , U , V ,
and q represent the coe�cients of net load demand modeling, and
4C is the error term at moment C . Thus, we can have the DF test
de�ned as follows:

�#C = #C � #C�1 = U + V · C + W · #C�1 + 4C (8)

where � is the �rst di�erence operator, #C and #C�1 denote net
demand at moments C and C � 1, U , V , and W are the coe�cients of
net demand modeling, and 4C is the error term at moment C .

6.4 Experimental Results
6.4.1 �antifying SolarTrader’s performance on the reduction of
aggregated VPP energy consumption drawn from the grid. As we
explained in Section 6.2, we compare SolarTrader with other 9
di�erent solar energy trading approaches. In this case, we are eval-
uating SolarTrader’s performance on reducing the aggregated VPP
energy consumption. Unsurprisingly, as shown in Figure 7 (top), all
the trading approaches are reporting reduction in their aggregated
net energy drawn from the grid over the hours of a day in Colorado
VPP. In particular, SolarTrader stands out as the the best performing
approach that reduces aggregated VPP energy consumption per-
hour across the entire year. Figure 7 (middle) shows the breakdown
of the aggregated electricity consumption over the days of a week
in the same VPP. We observe the similar result that SolarTrader
is always the best performing approach that reduces aggregated
VPP energy consumption everyday in a week in the whole year.
Note that for this VPP in Colorado, solar energy trading happens
between the local sunrise and sunset time in a day, roughly from 8
am to 8:30 pm in 2019 when solar generation is available. In addi-
tion, due to the “nature” and daily routines that the residents are
consuming more electricity in daytime from 7 am to 10 pm than
other times when users are typically sleeping in a day, we also
observe that aggregated energy consumption after applying solar
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Figure 8: The comparison results of LRF and SolarTrader in
4 di�erent U.S. residential VPPs and online.

energy trading approaches is proportional to the net consumption
when assuming none of the VPP users have any solar deployment
(shown as the longest dark bar in Figure 7 (top)). Eventually, in
addition to Colorado VPP, we also examine SolarTrader’s perfor-
mance on the reduction of aggregated VPP energy consumption
drawn from the grid in 3 other residential VPPs from California,
New York, and Texas. Figure 8 (a) shows the comparison results of
these 4 di�erent VPPs and online VPP. SolarTrader is consistently
the best performing solar energy trading approach across all the
4 di�erent regions. In addition, SolarTrader resulted in ⇠538 kWh
energy feeding back to the grid, rather than requiring electricity
from the grid in New York.
Results: Comparing with non-sharing approach and the other 8 cur-
rent solar energy trading approaches, SolarTrader is the best perform-
ing approach everyday in the year, and it has resulted in signi�cant
average reduction of 83.8% in the aggregated net energy drawn from
the grid across 4 di�erent U.S. residential VPPs and online VPP.

6.4.2 �antifying SolarTrader’s performance on the saving of res-
idents’ monthly electricity bills. As we explained in Section 6.2,
we compare SolarTrader with 8 other trading approaches with re-
spect to the VPP users’ monthly electricity savings. In this case,
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Figure 9: The comparison results of RR and SolarTrader.

we are evaluating how a DSER user can bene�t from trading its
solar energy with neighbors. Figure 7 (bottom) shows the statistical
breakdown of monthly electricity savings across days of a week.
The results show that SolarTrader enables DSER users in the VPPs
to achieve the most signi�cant savings in their monthly electricity
savings on every day of a week. We next examine the performance
of various approaches with respect to the VPP users’ monthly en-
ergy savings using 4 residential VPPs from 4 di�erent states. As
shown in Figure 8 (b), SolarTrader achieves average savings of
109.8% across the 4 di�erent states, and thus is the best perform-
ing trading approach in these residential VPPs. Interestingly, in
addition to saving energy for the residents in the New York VPP,
SolarTrader has resulted in an additional 50% of the monthly energy
consumption of non-sharing approach to be sent back to the grid.
Thus, SolarTrader allows the VPP to feed more surplus solar energy
back to the grid and achieves more bene�ts for the VPP users.
Results: Comparing with non-sharing approach and 8 other existing
solar energy trading approaches, SolarTrader is the best performing
approach everyday in the year, achieving the signi�cant average
saving—109.8% in monthly electricity consumption across 4 di�erent
residential U.S. VPPs and online VPP.

6.4.3 �antifying SolarTrader’s performance on the trading fairness
for long term. We next examine SolarTrader’s performance on the
fairness in long term trading process. Figure 9 (a) reports the Gini
Coe�cient (GC) of RR and SolarTrader in 3 di�erent residential
VPPs using the same dataset as Figure 8. Note that based on the
insight we learn from Section 2, RR is the best performing approach
regarding to the fairness of a solar energy trading approach. As we
can see from Figure 9 (a), SolarTrader yields the similar GC to that
of RR approach across 3 VPPs of California, Texas, and Colorado.
Results: SolarTrader yields a GC similar to that of RR approach
across 3 di�erent U.S. VPPs. In addition to reducing aggregated VPP
energy consumption and increasing monthly savings simultaneously,
SolarTrader enforces the best fairness of solar energy trading.

6.4.4 �antifying SolarTrader’s scalable performance. Next, we
examine the trading performance e�ect on SolarTrader and other
trading approaches when using the VPPs that have di�erent amount
of DSERs. In doing so, we are evaluating the scalability of Solar-
Trader. As shown in Figure 9, the larger amount of the DSERs in a
VPP has resulted in a better overall trading performance. Specially,
Figure 9 (b) shows that SolarTrader can achieve higher e�cient
saving in VPP user monthly electricity energy savings when the
number of the DSERs increase from 10 to 100, and that it is always
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before applying any solar sharing approaches (Top) and af-
ter applying LRF (Middle) and SolarTrader (Bottom).
signi�cantly better than RR approach. As shown in Figure 9 (c), So-
larTrader also reduces GC by ⇠75% when the amount of the DSERs
increasing from 10 to 100 over 12 months. Therefore, SolarTrader is
able to achieve signi�cantly higher monthly electricity cost savings
and lower GCs as the the VPP size increases.
Results: Larger VPP size has resulted in higher monthly electric-
ity cost savings and lower GCs of SolarTrader. With the growing of
VPP size, SolarTrader achieves better overall trading performance
regarding to electricity cost saving and long term trading fairness.

6.4.5 �antifying SolarTrader’s improvement to grid operation.
Next, we examine the trading performance e�ect on demand fore-
casting of SolarTrader and LRF approach. In doing so, we bench-
mark the ability of SolarTrader to assist the grid in managing its
operations. Figure 10 shows the 1 year comparison results of aggre-
gated net grid consumption after applying SolarTrader (Figure 10
(bottom)) and LRF approach (Figure 10 middle) which is the best
performing approach regarding to reducing aggregated energy con-
sumption. We benchmark each approach using Dicke—Fuller (DF)
Test. We �nd that non-sharing, LRF, and SolarTrader yield their test
statistic values as -8.16, -9.76, and -11.56, respectively. And these
test statistic values are much smaller than the signi�cant critical
value (5%) as -2.862. Thus, we can reject the null hypothesis that the
aggregated entire VPP energy consumption is not stationary with
respect to its forecasting. The more negative test statistic value, the
stronger for us to reject this null hypothesis. Thus, SolarTrader-
enabled VPP achieves the best net demand forecasting performance.
Results: A SolarTrader-enabled VPP maximally improves the grid
operation performance with respect to its net demand forecasting.

7 RELATEDWORK
There is no signi�ant prior work on solar energy trading in VPPs.
However, there is signi�cant work in the related ares of micro-
grid [18, 19, 38] and community shared solar arrays (CSSA) [11, 14].
Several prior approaches in the literature do not allow VPPs
users to achieve their maximum bene�ts from the DSERs such
as rooftop solar PV arrays, CSSA, and other solar energy storage
systems [7, 8, 10, 21, 22, 26, 30, 34, 36, 37]. The primary reason for
this handicap is that these solar energy sharing approaches do not
actually allow DSER users to trade their surplus solar generated
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energy concurrently, and typically require a trusted third-party to
play the role of middleman to supervise the trading processes. In
addition, due to a lack of fair trading algorithms, these approaches
do not actually result in long term “fair” solar energy trading among
all the VPP users. In contrast, SolarTrader enables fully distributed,
scalable, and long term fair solar energy trading in residential VPPs.
SolarTrader leverages multi-agent deep reinforcement learning ap-
proach to automatically learn a collaborative policy in a shared
VPP environment, which can be deployed on DSER agents without
extra training. In addition, the policy is trained on P2P system ar-
chitecture and executed in a distributed manner such that all the
DSER agents can trade their solar generated energy concurrently.
Through reward and penalty learning, SolarTrader also ensures
solar energy trading fairness across all DSER agents in long term.

8 CONCLUSION
SolarTrader is a new solar energy trading system that enables un-
supervised, distributed, and long-term fair solar energy trading in
residential VPPs. In essence, it leverages a new multi-agent deep re-
inforcement learning approach that enables P2P and distributed so-
lar energy trading among di�erent DSERs to ensure both VPP users
and the grid to maximize bene�ts simultaneously. We implemented
SolarTrader and evaluated it using both real netmeter data from 4
U.S. residential communities that are comprised of ⇠219 residential
DSERs and online smart meter data from 10 residential DSERs. Our
results show that SolarTrader enables DSER users to achieve the
signi�cant average saving — as much as 109.8% — in their monthly
electricity consumption, while also enforcing the most fair trading
process simultaneously. In addition, a SolarTrader-enabled VPP
experiences an average reduction of 83.8% in the aggregated net
energy drawn from the grid. We plan to deploy a prototype of So-
larTrader in two community shared solar PV systems to further
understand the bene�ts of our proposed approach. In addition, we
will design new policies and expand the current DSER agent de�ni-
tion to abstract and integrate more DSERs into SolarTrader, such as
EVs, utility battery banks, and wind generated energy. Finally, we
plan to integrate SolarTrader with the most recent solar generation
forecasting model to enable days-ahead trading.
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